收录:
摘要:
The poisoning effects of alkali metals (K and Na) and alkaline earth metals (Ca and Mg) on catalytic performance of the 2Nb4Ce/Zr-PILC catalyst for the selective catalytic reduction of NOx with NH3 (NH3-SCR) were investigated, and physicochemical properties of the catalysts were characterized by means of the X-ray diffraction XRD (XRD), Brunner-Emmet-Teller (BET), hydrogen temperature-programmed reduction (H-2-TPR), X-ray Photoelectron Spectroscopy (XPS), ammonia temperature-programmed desorption (NH3-TPD), and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) techniques. Doping of M (M = K, Na, Ca, and Mg) deactivated the 2Nb4Ce/Zr-PILC catalyst according to the sequence of 0.8 K > 0.8 Na > 0.8 Ca > 0.8 Mg (M/Ce molar ratio = 0.8). The characterization results showed that the decreases in redox ability, NH3 adsorption, Ce3+/Ce4+ atomic ratio, and amount of the chemisorbed oxygen (O-beta) were the important factors influencing catalytic activities of the alkali metal-and alkaline earth metal-doped samples. Consequently, compared with the Mg- and Ca-doped samples, doping of K caused the 2Nb4Ce/Zr-PILC sample to possess the lowest redox ability, NH3 adsorption, and amount of the O-beta species, which resulted in an obvious deactivation effect.
关键词:
通讯作者信息:
电子邮件地址: