• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Hongjuan (Chen, Hongjuan.) | Chen, Su (Chen, Su.) | Chen, Shicai (Chen, Shicai.) | Zhang, Xueming (Zhang, Xueming.) | Wang, Lihui (Wang, Lihui.)

收录:

EI Scopus SCIE

摘要:

In the shaking table tests of underground structures, the scale ratios of the soil and structure are inconsistent. To this end, a scaled model soil was developed in this study. Through a series of tests, the dynamic response of the model soil was investigated. A clay mixed with sawdust was designed for shaking table tests based on the predominant period similarity relationship between the structure and the foundation soil. The sawdust-mixed clay was subjected to a series of shaking table tests at Beijing University of Technology using a rigid prefabricated continuous model box (dimensions: 7.7 m x 3.2 m x 1.2 m). Through the tests, the performance of the model box and the nonlinear seismic behavior of the model soil were studied. The results are as follows: (i) The boundary effect of the model box was negligible during the test. (ii) The predominant frequencies of the model soil shifted toward lower values with increasing shaking intensity. This indicated that the model soil became increasingly softer and that the nonlinear effect of the soil was more evident. (iii) With the increase in the shaking intensity, the peak acceleration of the model soil at the same measured points increased, whereas their amplification factors decreased. In addition, the amplification factors first decreased and then increased from the bottom to the top of the soil. This might have been due to the increase in the shear strain and decrease in the shear modulus of the soil with increasing shaking intensity. (iv) The shear modulus of the soil was closely related to the confining pressure. At the same shaking intensity, the shear stress increased, and the shear strain decreased from top to bottom of the model soil.

关键词:

Model soil Shaking table test Sawdust Dynamic behavior Seismic

作者机构:

  • [ 1 ] [Chen, Hongjuan]China Earthquake Adm, Inst Geophys, Beijing 100081, Peoples R China
  • [ 2 ] [Chen, Su]China Earthquake Adm, Inst Geophys, Beijing 100081, Peoples R China
  • [ 3 ] [Chen, Shicai]Beijing Univ Technol, Beijing Key Lab Earthquake Engn & Struct Retrofit, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Xueming]Shijiazhuang Tiedao Univ, Minist Educ, Key Lab Rd & Railway Engn Safety Control, Shijiazhuang 050043, Hebei, Peoples R China
  • [ 5 ] [Wang, Lihui]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China

通讯作者信息:

  • [Chen, Su]China Earthquake Adm, Inst Geophys, Beijing 100081, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

SOIL DYNAMICS AND EARTHQUAKE ENGINEERING

ISSN: 0267-7261

年份: 2021

卷: 142

4 . 0 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:87

JCR分区:2

被引次数:

WoS核心集被引频次: 9

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:625/4960301
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司