收录:
摘要:
In the current work, an accurate modified couple stress-based cylindrical micro-panel model is developed in the framework of sinusoidal shear deformation theory. The classical strain tensors and curvature tensor components in a modified couple stress-based model are given with consideration of the geometric curve of cylindrical panels. In conjunction with a general Lagrange procedure, the proposed model is implemented to derive a system of Mathieu-Hill equations of governing dynamic stability behaviors of the cylindrical micro-panels. The Navier-type solution and Bolotin's method are applied to predict the principle unstable regions of the micro-panels with simply-supported boundary condition. As an application of the proposed model, the size-dependent stability of a functionally graded graphene nanoplatelets reinforced composite (FG-GNPRC) cylindrical micro-panel under axial oscillation compression is investigated for the first time. It is assumed that the weight fraction of graphene nanoplatelets (GNPs) is graded in the panel thickness. The effective Young's modulus of FG-GNPRC is determined based on a modified Halpin-Tsai model, while the mixture rule used to evaluate the effective Poisson's ratio and the mass density. The parameter studies are performed to examine the effect of dimensionless length parameter, GPL distribution patterns, GPL size and shape, length-to-span ratio and radius-to-span ratio on the sizedependent dynamic stabilities of FG-GNPRC cylindrical micro-panels.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
THIN-WALLED STRUCTURES
ISSN: 0263-8231
年份: 2021
卷: 160
6 . 4 0 0
JCR@2022
ESI学科: ENGINEERING;
ESI高被引阀值:87
JCR分区:1
归属院系: