• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Shi, Cheng (Shi, Cheng.) | Ji, Changwei (Ji, Changwei.) (学者:纪常伟) | Ge, Yunshan (Ge, Yunshan.) | Wang, Shuofeng (Wang, Shuofeng.) | Wang, Huaiyu (Wang, Huaiyu.) | Yang, Jinxin (Yang, Jinxin.)

收录:

EI SCIE

摘要:

Hydrogen two-stage direct-injection enrichment is a novel injection strategy to utilize hydrogen more efficiently and effectively in gasoline rotary engines by inheriting the merits of hydrogen and direct injection simultaneously, such as flexible control, efficiency improvement, and emissions reduction. Based on the CONVERGE code with detailed chemistry solvers, a full-cycle CFD modeling including hydrogen jet-flow and combustion processes was presented and validated by experimental data. To understand the role of hydrogen two-stage injection in improving engine performance at part-load and lean-burn regime, six different injection arrangements for which two-stage injection strategies with variable hydrogen amount for each pulse (up to 30% for postinjection) had considered. The different effects on species evolution, combustion characteristics, knock propensity, and emissions formation were analyzed step-by-step. The simulation results showed that compared with direct-injected hydrogen for single-pulse, injecting adequate hydrogen in the second pulse after spark-ignition onwards performed a significant beneficial effect on the mixture stratification and flame propagation, especially for the trailing part of the rotor chamber, which contributed to the improvement in both combustion characteristics and thermal efficiency. The assessment of knock propensity demonstrated that the two-stage direct-injected hydrogen had the potential of mitigating the knock under lean operations. Using split injection accompanied by an optimized hydrogen allocation strategy allowed substantial unburned hydrocarbon and carbon monoxide reductions with a slight nitrogen oxide penalty rate due to the elevated combustion temperature.

关键词:

CFD modeling Hydrogen two-stage direct-injection Knock propensity Rotary engine Stratified combustion

作者机构:

  • [ 1 ] [Shi, Cheng]Beijing Inst Technol, Sch Mech Engn, Beijing 100081, PR, Peoples R China
  • [ 2 ] [Ge, Yunshan]Beijing Inst Technol, Sch Mech Engn, Beijing 100081, PR, Peoples R China
  • [ 3 ] [Wang, Huaiyu]Beijing Inst Technol, Sch Mech Engn, Beijing 100081, PR, Peoples R China
  • [ 4 ] [Ji, Changwei]Beijing Univ Technol, Coll Energy & Power Engn, Beijing Lab New Energy Vehicles, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Shuofeng]Beijing Univ Technol, Coll Energy & Power Engn, Beijing Lab New Energy Vehicles, Beijing 100124, Peoples R China
  • [ 6 ] [Yang, Jinxin]Beijing Univ Technol, Coll Energy & Power Engn, Beijing Lab New Energy Vehicles, Beijing 100124, Peoples R China
  • [ 7 ] [Ji, Changwei]Beijing Univ Technol, Key Lab Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 8 ] [Wang, Shuofeng]Beijing Univ Technol, Key Lab Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 9 ] [Yang, Jinxin]Beijing Univ Technol, Key Lab Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 10 ] [Shi, Cheng]Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
  • [ 11 ] [Ji, Changwei]Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
  • [ 12 ] [Ge, Yunshan]Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China
  • [ 13 ] [Wang, Huaiyu]Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China

通讯作者信息:

  • 纪常伟

    [Ji, Changwei]Beijing Univ Technol, Coll Energy & Power Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

FUEL

ISSN: 0016-2361

年份: 2021

卷: 287

7 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:9

被引次数:

WoS核心集被引频次: 30

SCOPUS被引频次: 35

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:1504/2989076
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司