• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bi, Jing (Bi, Jing.) | Li, Shuang (Li, Shuang.) | Yuan, Haitao (Yuan, Haitao.) | Zhou, MengChu (Zhou, MengChu.)

收录:

EI SCIE

摘要:

Cloud computing providers face several challenges in precisely forecasting large-scale workload and resource time series. Such prediction can help them to achieve intelligent resource allocation for guaranteeing that users’ performance needs are strictly met with no waste of computing, network and storage resources. This work applies a logarithmic operation to reduce the standard deviation before smoothing workload and resource sequences. Then, noise interference and extreme points are removed via a powerful filter. A Min–Max scaler is adopted to standardize the data. An integrated method of deep learning for prediction of time series is designed. It incorporates network models including both bi-directional and grid long short-term memory network to achieve high-quality prediction of workload and resource time series. The experimental comparison demonstrates that the prediction accuracy of the proposed method is better than several widely adopted approaches by using datasets of Google cluster trace. © 2020 Elsevier B.V.

关键词:

Deep learning Digital storage Forecasting Learning systems Time series

作者机构:

  • [ 1 ] [Bi, Jing]School of Software Engineering in Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Li, Shuang]School of Software Engineering in Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Yuan, Haitao]School of Automation Science and Electrical Engineering, Beihang University, Beijing; 100191, China
  • [ 4 ] [Zhou, MengChu]Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark; NJ; 07102, United States

通讯作者信息:

  • [yuan, haitao]school of automation science and electrical engineering, beihang university, beijing; 100191, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Neurocomputing

ISSN: 0925-2312

年份: 2021

卷: 424

页码: 35-48

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:11

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 96

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:171/3611070
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司