• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Guo, Kan (Guo, Kan.) | Hu, Yongli (Hu, Yongli.) (学者:胡永利) | Qian, Zhen (Qian, Zhen.) | Liu, Hao (Liu, Hao.) | Zhang, Ke (Zhang, Ke.) | Sun, Yanfeng (Sun, Yanfeng.) (学者:孙艳丰) | Gao, Junbin (Gao, Junbin.) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

EI Scopus SCIE

摘要:

Traffic prediction is a core problem in the intelligent transportation system and has broad applications in the transportation management and planning, and the main challenge of this field is how to efficiently explore the spatial and temporal information of traffic data. Recently, various deep learning methods, such as convolution neural network (CNN), have shown promising performance in traffic prediction. However, it samples traffic data in regular grids as the input of CNN, thus it destroys the spatial structure of the road network. In this paper, we introduce a graph network and propose an optimized graph convolution recurrent neural network for traffic prediction, in which the spatial information of the road network is represented as a graph. Additionally, distinguishing with most current methods using a simple and empirical spatial graph, the proposed method learns an optimized graph through a data-driven way in the training phase, which reveals the latent relationship among the road segments from the traffic data. Lastly, the proposed method is evaluated on three real-world case studies, and the experimental results show that the proposed method outperforms state-of-the-art traffic prediction methods.

关键词:

traffic prediction Graph convolution network Recurrent neural networks Roads Training recurrent neural network Convolution

作者机构:

  • [ 1 ] [Guo, Kan]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 2 ] [Hu, Yongli]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 3 ] [Sun, Yanfeng]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 4 ] [Yin, Baocai]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 5 ] [Qian, Zhen]Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA
  • [ 6 ] [Qian, Zhen]Carnegie Mellon Univ, H John Heinz III Coll, Pittsburgh, PA 15213 USA
  • [ 7 ] [Liu, Hao]Beijing Municipal Commiss Transport, Beijing Transportat Informat Ctr, Beijing 100073, Peoples R China
  • [ 8 ] [Zhang, Ke]Beijing Municipal Commiss Transport, Beijing Transportat Coordinat Ctr, Beijing 100073, Peoples R China
  • [ 9 ] [Gao, Junbin]Univ Sydney, Business Sch, Discipline Business Analyt, Sydney, NSW 2006, Australia
  • [ 10 ] [Yin, Baocai]Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Peoples R China

通讯作者信息:

  • 胡永利

    [Hu, Yongli]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

ISSN: 1524-9050

年份: 2021

期: 2

卷: 22

页码: 1138-1149

8 . 5 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:87

JCR分区:1

被引次数:

WoS核心集被引频次: 205

SCOPUS被引频次: 244

ESI高被引论文在榜: 18 展开所有

  • 2024-11
  • 2024-11
  • 2024-9
  • 2024-9
  • 2024-7
  • 2024-5
  • 2024-3
  • 2024-1
  • 2023-11
  • 2023-9
  • 2023-7
  • 2023-5
  • 2023-3
  • 2023-1
  • 2022-11
  • 2022-9
  • 2022-7
  • 2021-7

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:923/4234111
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司