• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ullah, Amin (Ullah, Amin.) | Rehman, Sadaqat ur (Rehman, Sadaqat ur.) | Tu, Shanshan (Tu, Shanshan.) | Mehmood, Raja Majid (Mehmood, Raja Majid.) | Fawad (Fawad.) | Ehatisham-ul-haq, Muhammad (Ehatisham-ul-haq, Muhammad.)

收录:

EI Scopus SCIE PubMed

摘要:

Electrocardiogram (ECG) signals play a vital role in diagnosing and monitoring patients suffering from various cardiovascular diseases (CVDs). This research aims to develop a robust algorithm that can accurately classify the electrocardiogram signal even in the presence of environmental noise. A one-dimensional convolutional neural network (CNN) with two convolutional layers, two down-sampling layers, and a fully connected layer is proposed in this work. The same 1D data was transformed into two-dimensional (2D) images to improve the model's classification accuracy. Then, we applied the 2D CNN model consisting of input and output layers, three 2D-convolutional layers, three down-sampling layers, and a fully connected layer. The classification accuracy of 97.38% and 99.02% is achieved with the proposed 1D and 2D model when tested on the publicly available Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database. Both proposed 1D and 2D CNN models outperformed the corresponding state-of-the-art classification algorithms for the same data, which validates the proposed models' effectiveness.

关键词:

2D CNN arrhythmia database electrocardiogram signal arrhythmia classification MIT-BIH

作者机构:

  • [ 1 ] [Ullah, Amin]Univ Engn & Technol Taxila, Software Engn Dept, Punjab 47050, Pakistan
  • [ 2 ] [Ehatisham-ul-haq, Muhammad]Univ Engn & Technol Taxila, Software Engn Dept, Punjab 47050, Pakistan
  • [ 3 ] [Ullah, Amin]Univ Cent Florida UCF, Coll Engn & Comp Sci, Ctr Res Comp Vis Lab CRCV Lab, Orlando, FL 32816 USA
  • [ 4 ] [Rehman, Sadaqat ur]Beijing Univ Technol, Fac Informat Technol, Engn Res Ctr Intelligent Percept & Autonomous Con, Beijing 100124, Peoples R China
  • [ 5 ] [Tu, Shanshan]Beijing Univ Technol, Fac Informat Technol, Engn Res Ctr Intelligent Percept & Autonomous Con, Beijing 100124, Peoples R China
  • [ 6 ] [Rehman, Sadaqat ur]Namal Inst, Dept Comp Sci, Mianwali 42250, Pakistan
  • [ 7 ] [Mehmood, Raja Majid]Xiamen Univ Malaysia, Sch Elect & Comp Engn, Informat & Commun Technol Dept, Sepang 43900, Malaysia
  • [ 8 ] [Fawad]Univ Engn & Technol Taxila, Telecommun Engn Dept, Punjab 47050, Pakistan

通讯作者信息:

  • [Tu, Shanshan]Beijing Univ Technol, Fac Informat Technol, Engn Res Ctr Intelligent Percept & Autonomous Con, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

SENSORS

年份: 2021

期: 3

卷: 21

3 . 9 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:96

JCR分区:2

被引次数:

WoS核心集被引频次: 76

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:506/4957684
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司