• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Wenli (Zhang, Wenli.) | Guo, Xiang (Guo, Xiang.) | Wang, Jiaqi (Wang, Jiaqi.) | Wang, Ning (Wang, Ning.) | Chen, Kaizhen (Chen, Kaizhen.)

收录:

EI Scopus SCIE PubMed

摘要:

In recent years, human detection in indoor scenes has been widely applied in smart buildings and smart security, but many related challenges can still be difficult to address, such as frequent occlusion, low illumination and multiple poses. This paper proposes an asymmetric adaptive fusion two-stream network (AAFTS-net) for RGB-D human detection. This network can fully extract person-specific depth features and RGB features while reducing the typical complexity of a two-stream network. A depth feature pyramid is constructed by combining contextual information, with the motivation of combining multiscale depth features to improve the adaptability for targets of different sizes. An adaptive channel weighting (ACW) module weights the RGB-D feature channels to achieve efficient feature selection and information complementation. This paper also introduces a novel RGB-D dataset for human detection called RGBD-human, on which we verify the performance of the proposed algorithm. The experimental results show that AAFTS-net outperforms existing state-of-the-art methods and can maintain stable performance under conditions of frequent occlusion, low illumination and multiple poses.

关键词:

asymmetric adaptive fusion multimodal RGB-D human detection two-stream network

作者机构:

  • [ 1 ] [Zhang, Wenli]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Guo, Xiang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Jiaqi]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Ning]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Chen, Kaizhen]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zhang, Wenli]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

SENSORS

年份: 2021

期: 3

卷: 21

3 . 9 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:96

JCR分区:2

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:465/4969048
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司