• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Huang, Wenhao (Huang, Wenhao.) | Chen, Shujun (Chen, Shujun.) (学者:陈树君) | Xiao, Jun (Xiao, Jun.) | Jiang, Xiaoqing (Jiang, Xiaoqing.) | Jia, Yazhou (Jia, Yazhou.)

收录:

EI Scopus SCIE

摘要:

Wire-feed additive manufacturing is efficient and cost-competitive in producing large expensive metal components with complex geometry in many industries especially for aerospace and automotive industries. Recently, researchers have shown an increased interest in the process ability of lightweight high-strength structural materials, such as aluminum alloys. However, there is still a lack of knowledge regarding laser wire-feed metal additive manufacturing (LWMAM) of aluminum and its alloys. To seek stable deposition conditions, it is necessary to understand the relationship between process parameters and geometry characteristics of the deposited materials. In this study, the deposition of Al alloy 5A06 wire with a laser beam was investigated by producing single and multi-layered tracks. The effect of the wire feeding direction and the angle was firstly studied, and then the influence of the main process parameters, such as laser power, traverse speed, and wire feed rate on geometry characteristics of the deposited was investigated. The high-speed camera system was used to capture the images of the weld pool and droplet transfer, which reflected the stability of the welding process.

关键词:

Laser wire-feed metal additive manufacturing Heat input Process parameters Aluminum alloy

作者机构:

  • [ 1 ] [Xiao, Jun]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Xiao, Jun]Beijing Univ Technol, Engn Res Ctr Adv Mfg Technol Automot Components, Minist Educ, Beijing 100124, Peoples R China

通讯作者信息:

  • [Xiao, Jun]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

OPTICS AND LASER TECHNOLOGY

ISSN: 0030-3992

年份: 2021

卷: 134

5 . 0 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:87

JCR分区:1

被引次数:

WoS核心集被引频次: 68

SCOPUS被引频次: 74

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:432/4965459
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司