• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Gaoyang (Li, Gaoyang.) | Wang, Haoran (Wang, Haoran.) | Zhang, Mingzi (Zhang, Mingzi.) | Tupin, Simon (Tupin, Simon.) | Qiao, Aike (Qiao, Aike.) | Liu, Youjun (Liu, Youjun.) | Ohta, Makoto (Ohta, Makoto.) | Anzai, Hitomi (Anzai, Hitomi.)

收录:

Scopus SCIE PubMed

摘要:

The clinical treatment planning of coronary heart disease requires hemodynamic parameters to provide proper guidance. Computational fluid dynamics (CFD) is gradually used in the simulation of cardiovascular hemodynamics. However, for the patient-specific model, the complex operation and high computational cost of CFD hinder its clinical application. To deal with these problems, we develop cardiovascular hemodynamic point datasets and a dual sampling channel deep learning network, which can analyze and reproduce the relationship between the cardiovascular geometry and internal hemodynamics. The statistical analysis shows that the hemodynamic prediction results of deep learning are in agreement with the conventional CFD method, but the calculation time is reduced 600-fold. In terms of over 2 million nodes, prediction accuracy of around 90%, computational efficiency to predict cardiovascular hemodynamics within 1 second, and universality for evaluating complex arterial system, our deep learning method can meet the needs of most situations. Anzai et al. propose a deep learning approach to estimate the 3D hemodynamics of complex aorta-coronary artery geometry in the context of coronary artery bypass surgery. Their method reduces the calculation time 600-fold, while allowing high resolution and similar accuracy as traditional computational fluid dynamics (CFD) method.

关键词:

作者机构:

  • [ 1 ] [Li, Gaoyang]Tohoku Univ, Inst Fluid Sci, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
  • [ 2 ] [Wang, Haoran]Tohoku Univ, Inst Fluid Sci, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
  • [ 3 ] [Zhang, Mingzi]Tohoku Univ, Inst Fluid Sci, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
  • [ 4 ] [Tupin, Simon]Tohoku Univ, Inst Fluid Sci, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
  • [ 5 ] [Ohta, Makoto]Tohoku Univ, Inst Fluid Sci, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
  • [ 6 ] [Anzai, Hitomi]Tohoku Univ, Inst Fluid Sci, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
  • [ 7 ] [Wang, Haoran]Tohoku Univ, Grad Sch Biomed Engn, Aoba Ku, 6-6 Aramaki Aza Aoba, Sendai, Miyagi 9808579, Japan
  • [ 8 ] [Ohta, Makoto]Tohoku Univ, Grad Sch Biomed Engn, Aoba Ku, 6-6 Aramaki Aza Aoba, Sendai, Miyagi 9808579, Japan
  • [ 9 ] [Qiao, Aike]Beijing Univ Technol, Coll Life Sci & Bioengn, 100 Pingleyuan, Beijing 100022, Peoples R China
  • [ 10 ] [Liu, Youjun]Beijing Univ Technol, Coll Life Sci & Bioengn, 100 Pingleyuan, Beijing 100022, Peoples R China
  • [ 11 ] [Ohta, Makoto]Tohoku Univ, Univ Lyon, CNRS, ELyTMaX,UMI 3757, Sendai, Miyagi 9808579, Japan

通讯作者信息:

  • [Anzai, Hitomi]Tohoku Univ, Inst Fluid Sci, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

COMMUNICATIONS BIOLOGY

年份: 2021

期: 1

卷: 4

5 . 9 0 0

JCR@2022

JCR分区:1

被引次数:

WoS核心集被引频次: 73

SCOPUS被引频次: 95

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:472/4968834
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司