• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Dongmei (Zhang, Dongmei.) | Cheng, Yukun (Cheng, Yukun.) | Li, Min (Li, Min.) | Wang, Yishui (Wang, Yishui.) | Xu, Dachuan (Xu, Dachuan.) (学者:徐大川)

收录:

CPCI-S EI Scopus SCIE

摘要:

In the spherical k-means problem (SKMP), which is a well-studied clustering problem in text mining, we are given an n-point set D in d-dimensional unit sphere Sd, and an integer k <= n. The goal is to find a center subset S c Sd with vertical bar k vertical bar <= k that minimizes the sum of cosine dissimilarity measure for each point in D to the nearest center. We prove that any gamma-approximation algorithm for the k-means problem (KMP) can be adapted to the SKMP with 2 gamma-approximation ratio. It follows that there is a local search (18 + c)-approximation algorithm for the SKMP, by leveraging the classical local search (9 + c)-approximation algorithm for the KMP. Therefore, an interesting problem arises, that is whether there exists an approximation algorithm using local search scheme directly for the SKMP. In this paper, we present a local search approximation algorithm for the SKMP and prove its performance guarantee is (2(4 + root 7) + c). We also conduct numerical computation to show the efficiency of the local search approximation algorithm by single-swap operation in the end. (C) 2020 Elsevier B.V. All rights reserved.

关键词:

Local search Spherical k-means Approximation algorithm Data mining

作者机构:

  • [ 1 ] [Zhang, Dongmei]Shandong Jianzhu Univ, Sch Comp Sci & Technol, Jinan 250101, Peoples R China
  • [ 2 ] [Cheng, Yukun]Suzhou Univ Sci & Technol, Sch Business, Suzhou Key Lab Big Data & Informat Serv, Suzhou 215009, Peoples R China
  • [ 3 ] [Li, Min]Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
  • [ 4 ] [Wang, Yishui]Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
  • [ 5 ] [Xu, Dachuan]Beijing Univ Technol, Dept Operat Res & Sci Comp, Beijing 100124, Peoples R China

通讯作者信息:

  • [Cheng, Yukun]Suzhou Univ Sci & Technol, Sch Business, Suzhou Key Lab Big Data & Informat Serv, Suzhou 215009, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

THEORETICAL COMPUTER SCIENCE

ISSN: 0304-3975

年份: 2021

卷: 853

页码: 65-77

1 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:4

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 6

归属院系:

在线人数/总访问数:363/3886545
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司