• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

He, Lin (He, Lin.) | Zhang, Jing (Zhang, Jing.) | Zhuo, Li (Zhuo, Li.) | Shen, Lansun (Shen, Lansun.)

收录:

CPCI-S

摘要:

In order to reduce the semantic gap between low-level visual features and high-level semantics, a novel approach for constructing user preference profile in personalized image retrieval is proposed. In proposed approach, the user interest is divided into two parts: the short-tem interest and the long-term interest. Semantic feature vector in the short-term interest is constructed by building the correlation between image low-level visual features and high-level semantics on the basis of SVM after collecting the visual feature vector in the short-term interest with relevance feedback. Moreover, the visual feature vector in the long-term interest can be collected by the non-linear gradual forgetting interest inference algorithm. Semantic feature vector in the long-term is constructed with clustering algorithm. Experiments results show that the average recall/precision are significantly improved and satisfied by personalized user as well.

关键词:

Personalized Image Retrieval Inference Engine User Preference Profile Relevance Feedback

作者机构:

  • [ 1 ] [He, Lin]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Jing]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China
  • [ 3 ] [Zhuo, Li]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China
  • [ 4 ] [Shen, Lansun]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China

通讯作者信息:

  • [He, Lin]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2008 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND SIGNAL PROCESSING, VOLS 1 AND 2

年份: 2007

页码: 434-439

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:344/4972974
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司