• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Jing (Zhang, Jing.) (学者:张菁) | Zhuo, Li (Zhuo, Li.) | Shen, Lansun (Shen, Lansun.)

收录:

CPCI-S

摘要:

The presented research addressed a novel visual attention model and watershed segmentation based approach of Regions of Interest (ROIs) extraction, which automatically extracts ROIs and copes with the watershed over-segmentation. This approach uses visual attention model to locate salient points, in which the winner point, the most salient point, is selected as the seed point of watershed segmentation. ROIs are extracted by combining salient regions with watershed segmented regions. The focus of attention (FOA) is shifted to measure the importance or interest of the extracted regions. The experimental results show that the proposed method is effective to reduce over-segmentation in auto-extracting ROIs and performs well for different objects.

关键词:

Watershed Segmentation FOA ROIs Visual Attention Model

作者机构:

  • [ 1 ] [Zhang, Jing]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China
  • [ 2 ] [Zhuo, Li]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China
  • [ 3 ] [Shen, Lansun]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China

通讯作者信息:

  • 张菁

    [Zhang, Jing]Beijing Univ Technol, Signal & Informat Proc Lab, 100 PingLeYuan, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2008 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND SIGNAL PROCESSING, VOLS 1 AND 2

年份: 2007

页码: 375-378

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:54/3929373
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司