收录:
摘要:
Secret key generation (SKG) is an emerging technology to secure wireless communication from attackers. Therefore, the SKG at the physical layer is an alternate solution over traditional cryptographic methods due to wireless channels' uncertainty. However, the physical layer secret key genera-tion (PHY-SKG) depends on two fundamental parameters, i.e., coherence time and power allocation. The coherence time for PHY-SKG is not applicable to secure wireless channels. This is because coherence time is for a certain period of time. Thus, legitimate users generate the secret keys (SKs) with a shorter key length in size. Hence, an attacker can quickly get information about the SKs. Consequently, the attacker can easily get valuable information from authentic users. Therefore, we considered the scheme of power allocation to enhance the secret key generation rate (SKGR) between legitimate users. Hence, we pro-pose an alternative method, i.e., a power allocation, to improve the SKGR. Our results show 72% higher SKGR in bits/sec by increasing power transmission. In addition, the power transmission is based on two important parameters, i.e., epsilon and power loss factor, as given in power transmission equations. We found out that a higher value of epsilon impacts power transmission and subsequently impacts the SKGR. The SKGR is approximately 40.7% greater at 250 from 50 mW at epsilon = 1. The value of SKGR is reduced to 18.5% at 250 mW when epsilonis 0.5. Furthermore, the transmission power is also measured against the different power loss factor values, i.e., 3.5, 3, and 2.5, respectively, at epsilon = 0.5. Hence, it is concluded that the value of epsilon and power loss factor impacts power transmission and, consequently, impacts the SKGR.
关键词:
通讯作者信息:
电子邮件地址: