• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Xiaoli (Zhang, Xiaoli.) | Zhang, Kuixing (Zhang, Kuixing.) | Jiang, Mei (Jiang, Mei.) | Yang, Lin (Yang, Lin.)

收录:

CPCI-S Scopus SCIE PubMed

摘要:

BACKGROUND: Malignant lymphoma is a type of tumor that originated from the lymphohematopoietic system, with complex etiology, diverse pathological morphology, and classification. It takes a lot of time and energy for doctors to accurately determine the type of lymphoma by observing pathological images. OBJECTIVE: At present, an automatic classification technology is urgently needed to assist doctors in analyzing the type of lymphoma. METHODS: In this paper, by comparing the training results of the BP neural network and BP neural network optimized by genetic algorithm (GA-BP), adopts a deep residual neural network model (ResNet-50), with 374 lymphoma pathology images as the experimental data set. After preprocessing the dataset by image flipping, color transformation, and other data enhancement methods, the data set is input into the ResNet-50 network model, and finally classified by the softmax layer. RESULTS: The training results showed that the classification accuracy was 98.63%. By comparing the classification effect of GA-BP and BP neural network, the accuracy of the network model proposed in this paper is improved. CONCLUSIONS: The network model can provide an objective basis for doctors to diagnose lymphoma types.

关键词:

deep learning Resnet-50 Lymphoma pathological images automatic classification

作者机构:

  • [ 1 ] [Zhang, Xiaoli]Shandong Univ Tradit Chinese Med, Coll Intelligence & Informat Engn, Jinan 250355, Shandong, Peoples R China
  • [ 2 ] [Zhang, Kuixing]Shandong Univ Tradit Chinese Med, Coll Intelligence & Informat Engn, Jinan 250355, Shandong, Peoples R China
  • [ 3 ] [Jiang, Mei]Shandong Univ Tradit Chinese Med, Coll Intelligence & Informat Engn, Jinan 250355, Shandong, Peoples R China
  • [ 4 ] [Yang, Lin]Beijing Univ Technol, Fac Environm & Life, Beijing 100124, Peoples R China
  • [ 5 ] [Yang, Lin]Beijing Int Sci & Technol Cooperat Base Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zhang, Kuixing]Shandong Univ Tradit Chinese Med, Coll Intelligence & Informat Engn, Jinan 250355, Shandong, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

TECHNOLOGY AND HEALTH CARE

ISSN: 0928-7329

年份: 2021

卷: 29

页码: S335-S344

1 . 6 0 0

JCR@2022

ESI学科: MOLECULAR BIOLOGY & GENETICS;

ESI高被引阀值:127

JCR分区:4

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:535/4961866
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司