• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Meng (Xu, Meng.) | Zhang, Maoqing (Zhang, Maoqing.) | Cai, Xingjuan (Cai, Xingjuan.) | Zhang, Guoyou (Zhang, Guoyou.)

收录:

EI Scopus SCIE

摘要:

Multi-objective optimisation algorithm based on decomposition (MOEA/D) is a well-known multi-objective optimisation algorithm, which was widely applied for solving multi-objective optimisation problems (MOPs). MOEA/D decomposes a multi-objective problem into a set of scalar single objective sub-problems using aggregation function and evolutionary operator. A further improved version of MOEA/D with dynamic resource allocation strategy (MOEA/D-DRA) has exhibited outstanding performance on CEC2009 in terms of the convergence. However, it is very sensitive to the neighbourhood size. In this paper, a new enchanted MOEA/D-ANA strategy based on the adaptive neighbourhood size adjustment (MOEA/D-ANA) was presented to increase the diversity, which mainly focuses on the solutions density around sub-problems. The experiment results demonstrate that MOEA/D-ANA performs the best compared with other five classical MOEAs on the CEC2009 test instances.

关键词:

MOEA/D neighbourhood size CEC2009 test instances diversity

作者机构:

  • [ 1 ] [Xu, Meng]Taiyuan Univ Sci & Technol, Complex Syst & Computat Intelligence Lab, Taiyuan, Peoples R China
  • [ 2 ] [Zhang, Maoqing]Taiyuan Univ Sci & Technol, Complex Syst & Computat Intelligence Lab, Taiyuan, Peoples R China
  • [ 3 ] [Cai, Xingjuan]Taiyuan Univ Sci & Technol, Complex Syst & Computat Intelligence Lab, Taiyuan, Peoples R China
  • [ 4 ] [Zhang, Guoyou]Taiyuan Univ Sci & Technol, Complex Syst & Computat Intelligence Lab, Taiyuan, Peoples R China
  • [ 5 ] [Xu, Meng]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing, Peoples R China

通讯作者信息:

  • [Cai, Xingjuan]Taiyuan Univ Sci & Technol, Complex Syst & Computat Intelligence Lab, Taiyuan, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION

ISSN: 1758-0366

年份: 2021

期: 1

卷: 17

页码: 14-23

3 . 5 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:87

JCR分区:2

被引次数:

WoS核心集被引频次: 17

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:258/4299120
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司