• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Jinhui (Liu, Jinhui.)

收录:

EI

摘要:

In order to solve the problems of low detection accuracy, false detection and high miss detection rate of small targets in target detection tasks, this paper is a multi-target detection method based on YOLOv4 convolutional neural network. The proposed method is based on YOLOv4. The semantic information of high-level features is first propagated to the low-level network through FPN sampling, and then it is fused with the high-resolution information of the underlying features to improve the detection effect of small target detection objects. The information transmission path from the bottom to the top is enhanced by downsampling the feature pyramid, and finally the feature maps of different layers are fused to achieve relevant predictions. Experiments prove that the method proposed in this paper has good results. © Published under licence by IOP Publishing Ltd.

关键词:

Big data Convolution Convolutional neural networks Object detection Semantics

作者机构:

  • [ 1 ] [Liu, Jinhui]Department of Information, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • [liu, jinhui]department of information, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1742-6588

年份: 2021

期: 1

卷: 1883

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:1203/3587416
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司