• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Dong (Zhang, Dong.) | Zhang, Yiming (Zhang, Yiming.) | Liang, Biao (Liang, Biao.) | Wang, He (Wang, He.)

收录:

EI Scopus

摘要:

Compared with the traditional PI control, the current loop based on model predictive control has better dynamic performance and is widely used in the field of power electronic control. Peak current control (PCC) can conveniently protect the peak current of inductance, avoid the saturation of inductance, and easily realize the over-current protection of converter. In this paper, a model predictive peak current control algorithm for real time inductance identification is proposed for BOOST converter, and a method of double sampling peak current and valley current is proposed to realize real time identification of inductance value in a sampling period, which improves the dynamic performance and robustness of the algorithm. Simulation and experiment show that the proposed method can identify the inductance value in real time and track the reference value of the inductance current in two control periods. © Published under licence by IOP Publishing Ltd.

关键词:

Dynamics Model predictive control Inductance Electric current control DC-DC converters

作者机构:

  • [ 1 ] [Zhang, Dong]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Zhang, Yiming]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Liang, Biao]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Wang, He]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • [zhang, dong]faculty of information technology, beijing university of technology, beijing; 100124, china

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1742-6588

年份: 2021

期: 1

卷: 1820

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:308/4296458
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司