• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Heng (Wang, Heng.) | Li, Xiuzhi (Li, Xiuzhi.) | Zhang, Xiangyin (Zhang, Xiangyin.)

收录:

EI Scopus

摘要:

In order to improve the efficiency of multimodal fusion in human-robot interaction (HRI), an improved technique is proposed to synthesize visual and audio data. The robotic auditory system uses a microphone array to obtain auditory information and uses the MUSIC algorithm to determine the azimuth of the sound source, and uses end-to-end gating CNN recognizes speech results; For the visual system, a two-layer neural network system is used to detect and recognize dynamic gestures. An improved D-S evidence theory algorithm based on the rule intention voter is designed to fuse the output results of the two modules for determining intention of the current interactive object. Experimental results validate the efficiency and accuracy of multimodal fusion system. © 2021 IEEE.

关键词:

Human robot interaction Multilayer neural networks Man machine systems Network layers Efficiency

作者机构:

  • [ 1 ] [Wang, Heng]Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China
  • [ 2 ] [Wang, Heng]Engineering Research Center of Digital Community, Ministry of Education, Beijing; 100124, China
  • [ 3 ] [Li, Xiuzhi]Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China
  • [ 4 ] [Li, Xiuzhi]Engineering Research Center of Digital Community, Ministry of Education, Beijing; 100124, China
  • [ 5 ] [Zhang, Xiangyin]Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China
  • [ 6 ] [Zhang, Xiangyin]Engineering Research Center of Digital Community, Ministry of Education, Beijing; 100124, China

通讯作者信息:

  • [wang, heng]beijing university of technology, faculty of information technology, beijing; 100124, china;;[wang, heng]engineering research center of digital community, ministry of education, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 2689-6621

年份: 2021

页码: 2290-2295

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:760/3887159
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司