• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Sheng, Xu (Sheng, Xu.) | Lei, Wang (Lei, Wang.) | Xiang, He (Xiang, He.)

收录:

CPCI-S EI Scopus

摘要:

In order to meet the requirements of controlling the water quality of electric power, electronics and other manufacturing industries and reducing energy consumption through remote operation and maintenance system, an intelligent remote operation and maintenance system of ultra-pure water is constructed for ultra-pure water manufacturing in electronic industry. radial basis function neural network and generalized regression neural network are used to fit and predict the effluent quality of ultra-pure water. Through data analysis, the above algorithm is used to realize the accurate prediction of ultra-pure water system and intelligent adaptive control, which improves the accuracy and convergence speed of the algorithm. The results show that on the basis of the simulation of the model, the purpose of improving water production quality, saving energy and reducing consumption can be achieved through backwater utilization and frequency conversion speed regulation. © Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.

关键词:

Electric power system control Deep learning Maintenance Effluents Energy utilization Geology Quality control Water quality Environmental technology Radial basis function networks Computer aided software engineering Adaptive control systems Electronics industry

作者机构:

  • [ 1 ] [Sheng, Xu]Beijing University of Technology, Beijing; 100022, China
  • [ 2 ] [Lei, Wang]The No.771 Institute, The Ninth Academy of China Aerospace Science and Technology Corporation, Xi'an, Shaanxi; 710119, China
  • [ 3 ] [Xiang, He]School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing; 100044, China

通讯作者信息:

  • [sheng, xu]beijing university of technology, beijing; 100022, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ISSN: 1755-1307

年份: 2021

期: 3

卷: 632

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:392/4293913
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司