• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Piao Xinglin (Piao Xinglin.) | Zhang Yong (Zhang Yong.) (学者:张勇) | Li Tingshu (Li Tingshu.) | Hu Yongli (Hu Yongli.) (学者:胡永利) | Liu Hao (Liu Hao.) | Zhang Ke (Zhang Ke.) | Ge Yun (Ge Yun.)

收录:

PubMed

摘要:

The Received Signal Strength (RSS) fingerprint-based indoor localization is an important research topic in wireless network communications. Most current RSS fingerprint-based indoor localization methods do not explore and utilize the spatial or temporal correlation existing in fingerprint data and measurement data, which is helpful for improving localization accuracy. In this paper, we propose an RSS fingerprint-based indoor localization method by integrating the spatio-temporal constraints into the sparse representation model. The proposed model utilizes the inherent spatial correlation of fingerprint data in the fingerprint matching and uses the temporal continuity of the RSS measurement data in the localization phase. Experiments on the simulated data and the localization tests in the real scenes show that the proposed method improves the localization accuracy and stability effectively compared with state-of-the-art indoor localization methods.

关键词:

RSS fingerprint spatial constraint temporal constraint indoor localization sparse representation

作者机构:

  • [ 1 ] [Piao Xinglin]Beijing Advanced Innovation Center for Future Internet Technology, Beijing Key Laboratory of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing 100124, China. piaoxinglinphd@emails.bjut.edu.cn
  • [ 2 ] [Zhang Yong]Beijing Advanced Innovation Center for Future Internet Technology, Beijing Key Laboratory of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing 100124, China. zhangyong2010@bjut.edu.cn
  • [ 3 ] [Li Tingshu]Beijing Advanced Innovation Center for Future Internet Technology, Beijing Key Laboratory of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing 100124, China. yuqingqing@emails.bjut.edu.cn
  • [ 4 ] [Hu Yongli]Beijing Advanced Innovation Center for Future Internet Technology, Beijing Key Laboratory of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing 100124, China. huyongli@bjut.edu.cn
  • [ 5 ] [Liu Hao]Beijing Transportation Information Center, Beijing 100073, China. hao.liu@bjjtw.gov.cn
  • [ 6 ] [Zhang Ke]Beijing Transportation Coordination Center, Beijing 100073, China. zhangke@bjjtw.gov.cn
  • [ 7 ] [Ge Yun]Beijing Advanced Innovation Center for Future Internet Technology, Beijing Key Laboratory of Multimedia and Intelligent Software Technology, Beijing University of Technology, Beijing 100124, China. geyun@bjut.edu.cn

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Sensors

ISSN: 1424-8220

年份: 2016

期: 11

卷: 16

3 . 9 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:221

中科院分区:2

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:189/4598179
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司