• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Jian (Yang, Jian.) | Zhong, Ning (Zhong, Ning.) | Liang, Peipeng (Liang, Peipeng.) | Wang, Jue (Wang, Jue.) | Yao, Yiyu (Yao, Yiyu.) (学者:姚一豫) | Lu, Shengfu (Lu, Shengfu.)

收录:

CPCI-S

摘要:

Brain activation detection is an important problem in fMRI data analysis. In this paper we propose a data-driven activation detection method called neighborhood one-class SVM (NOC-SVM). By incorporating the idea of neighborhood consistency into one-class SVM, the method classifies a voxel as an activated or non-activated voxel by its neighbor weighted distance to a hyperplane in a high-dimensional kernel space. On two synthetic datasets under different SNRs, the proposed method almost has lower error rate than K-means clustering and fuzzy K-means clustering. On a real fMRI dataset, all the three algorithms can detect similar activated regions. Furthermore, the NOC-SVM is more stable than random algorithms, such as K-means clustering and fuzzy K-means clustering. These results show that the proposed NOC-SVM is a new effective method for activation detections in fMRI data.

关键词:

作者机构:

  • [ 1 ] [Yang, Jian]Beijing Univ Technol, Int WIC Inst, Beijing 100022, Peoples R China
  • [ 2 ] [Liang, Peipeng]Beijing Univ Technol, Int WIC Inst, Beijing 100022, Peoples R China
  • [ 3 ] [Lu, Shengfu]Beijing Univ Technol, Int WIC Inst, Beijing 100022, Peoples R China
  • [ 4 ] [Yao, Yiyu]Univ Regina, Dept Comp Sci, Regina, SK S4S 0A2, Canada
  • [ 5 ] [Zhong, Ning]Maebashi Inst Technol, Dept Life Sci & Informat, Maebashi, Gunma 371, Japan
  • [ 6 ] [Wang, Jue]Chinese Acad Sci, Beijing 100080, Peoples R China

通讯作者信息:

  • [Yang, Jian]Beijing Univ Technol, Int WIC Inst, Beijing 100022, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY, WORKSHOPS

年份: 2007

页码: 47-,

语种: 英文

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:156/4565079
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司