• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ji, Junzhoug (Ji, Junzhoug.) | Huang, Zhen (Huang, Zhen.) | Liu, Chunnian (Liu, Chunnian.) | Liu, Xuejing (Liu, Xuejing.) | Zhong, Ning (Zhong, Ning.)

收录:

CPCI-S EI Scopus

摘要:

Ant Colony Optimization (ACO) algorithm is a meta-heuristic and stochastic search technology, which has been one of the effective tools for solving discrete optimization problems. However there are two bottlenecks for large-scaled optimization problems: the ACO algorithm needs too much time to convergent and the solutions may not be really optimal. This paper proposes a novel ACO algorithm for the Multidimensional Knapsack Problems (MKP), which employs a new pheromone diffusion model and a mutation scheme. First, in light of the preference to better solutions, the association distances among objects are mined in each iteration with Top-k strategy. Then, a pheromone diffusion model based on info fountain of an object is established, which strengthens the collaborations among ants. Finally, an unique mutation scheme is applied to optimizing the evolution results of each step. The experimental results for the benchmark testing set of MKPs show that the proposed algorithm can not only get much more optimal solutions but also greatly enhance convergence speed

关键词:

作者机构:

  • [ 1 ] [Ji, Junzhoug]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100022, Peoples R China
  • [ 2 ] [Huang, Zhen]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100022, Peoples R China
  • [ 3 ] [Liu, Chunnian]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100022, Peoples R China

通讯作者信息:

  • [Ji, Junzhoug]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100022, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

ACM INTERNATIONAL CONFERENCE ON INTELLIGENT AGENT TECHNOLOGY (IAT 2007)

年份: 2007

页码: 10-,

语种: 英文

被引次数:

WoS核心集被引频次: 11

SCOPUS被引频次: 18

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:1064/3631127
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司