• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Hangeng (Li, Hangeng.) | Duan, Yanhua (Duan, Yanhua.) | Li, Qingshou (Li, Qingshou.) | Ruan, Xiaogang (Ruan, Xiaogang.)

收录:

CPCI-S

摘要:

selecting a subset of marker genes from thousands of genes is an important topic in microarray experiments for diseases classification and prediction. The SVM-RFE is popularly employed to select feature. In this paper, we proposed a hybrid approach to select marker genes for tumor classification. Firstly, filter method was employed to selected informative genes, and then we improved the standard SVM-REF to extract feature genes from the small set of informative genes. The improved SVM-RFE accelerates without reducing accuracy the standard support vector machine recursive feature elimination method. Our method has been implemented on ALL/AML dataset, and the results have shown that our method can achieve to select few of marker genes with minimum redundancy but getting better classification accuracy.

关键词:

feature selection gene expression SVM-RFE tumor classification

作者机构:

  • [ 1 ] [Li, Hangeng]Beijing Univ Technol, Sch Elect Informat & Control Engn, Beijing 100022, Peoples R China
  • [ 2 ] [Duan, Yanhua]Beijing Univ Technol, Sch Elect Informat & Control Engn, Beijing 100022, Peoples R China
  • [ 3 ] [Li, Qingshou]Beijing Univ Technol, Sch Elect Informat & Control Engn, Beijing 100022, Peoples R China
  • [ 4 ] [Ruan, Xiaogang]Beijing Univ Technol, Sch Elect Informat & Control Engn, Beijing 100022, Peoples R China

通讯作者信息:

  • [Li, Hangeng]Beijing Univ Technol, Sch Elect Informat & Control Engn, Beijing 100022, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROGRESS IN INTELLIGENCE COMPUTATION AND APPLICATIONS, PROCEEDINGS

年份: 2007

页码: 422-424

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:985/3645279
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司