• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

肖创柏 (肖创柏.) | 柏鳗晏 (柏鳗晏.) | 禹晶 (禹晶.)

收录:

Scopus CSCD

摘要:

为了使快速区域卷积神经网络(faster region-based convolutional neural network,Faster R-CNN)适用于小尺寸结构缝隙目标检测的应用,提出了一种基于Faster R-CNN的缝隙检测与提取算法,保留了小尺寸结构目标的细节信息,并提升了检测准确率.该算法分为缝隙检测和缝隙提取2个阶段.首先,在faster R-CNN的目标检测框架下,选取ImageNet数据集上的视觉几何组(visual geometry group,VGG)网络预训练模型作为特征提取网络,调整网络模型使其适应具有小尺寸结构的缝隙目标,并通过缝隙检测网络的训练确定最优的网络超参数,获得缝隙目标边框.然后,根据对目标区域的分析,提出基于数学形态学算法的缝隙提取算法,将缝隙目标从背景中分割出来.最终通过去噪、断裂连接和细化操作提取单像素宽缝隙目标,通过统计单像素宽缝隙目标的像素点个数得到缝隙目标长度值.实验结果表明,该算法可准确且完整地提取缝隙目标,在铁轨裂缝数据集上平均准确率达到63.87%,在道路裂缝数据集上的F1-score指标达到65.6%.

关键词:

缝隙检测 深度学习 卷积神经网络 快速区域卷积神经网络 缝隙提取 视觉几何组

作者机构:

  • [ 1 ] [肖创柏]北京工业大学

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

北京工业大学学报

ISSN: 0254-0037

年份: 2021

期: 2

卷: 47

页码: 135-146

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次: -1

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:334/5012429
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司