收录:
摘要:
自回归(AR)模型是一类描述时序序列相关性的有效方法,经典的AR系数估计方法对残差信号做了简单的假设,在噪声干扰等复杂场景中难以准确估计AR系数,而基于深度神经网络(DNN)的AR(DNN-AR)系数估计方法在训练中容易受到莱文逊-杜宾迭代(LDR)解法的数值稳定性的影响.为改善DNN-AR系数训练的稳定性和整体性能,在保证系统稳定性的前提下,本文利用精度转化提高系统运算速度的思路,提出了基于广义合成分析(GABS)模型的深度网络结构改善方法,提高了AR系数在含噪环境下估计的准确性和网络训练的稳定性.组合DNN的GABS(GABS-DNN)的模型由三个主要部分组成:修正器的谱增强网络、编码器的...
关键词:
通讯作者信息:
电子邮件地址: