• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

王伟 (王伟.) (学者:王伟) | 何东之 (何东之.)

摘要:

灰狼优化(grey wolf optimization,GWO)算法是模拟灰狼的种群活动而提出的群智能算法,该算法因其在高维度的求解精度较高而受到广泛关注,但是它与其他群智能算法一样存在收敛慢和易陷入局部最优的缺点.针对GWO算法所存在的问题,文章基于非线性控制因子和遗传算法中的变异思想,提出了一种改进的基于非线性控制因子和遗传变异的GWO算法(grey wolf optimization algorithm based on the nonlinear control factor and genetic variation,NGGWO),并提出一种基于余弦变换的非线性收敛因子,用于平衡算法的全局与局部搜索能力;同时,在算法中引入遗传变异策略,用于解决算法陷入局部时的停滞现象;通过一组基准测试函数,将NGGWO与GWO和其改进算法进行比较.实验结果表明,NGGWO基本优于GWO算法,相比于该文提出的3种改进GWO算法,NGGWO也具有性能上的优势.

关键词:

遗传变异 灰狼优化(GWO)算法 非线性控制 群智能算法

作者机构:

  • [ 1 ] [王伟]北京工业大学

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

合肥工业大学学报(自然科学版)

ISSN: 1003-5060

年份: 2021

期: 2

卷: 44

页码: 199-205

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次: -1

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:2377/3861559
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司