摘要:
贷款风险分析是全球金融机构面临的共同考验.在大数据背景下,通过机器学习算法预防贷款风险具有现实意义.针对贷款数据不平衡、噪声大等特点,本文采用Boruta特征选择算法对贷款数据进行重要性筛选;提出通过综合学习粒子群算法(Comprehensive Learning Particle Swarm Optimization,CLPSO)优化CatBoost集成学习算法(CLPSO-CatBoost)的贷款风险预测方法,该算法改善了全局搜索能力、避免了陷入容易陷入局部最优的问题.CLPSO-CatBoost相较于传统信用评估模型具有更好的准确性,有实际应用价值.
关键词:
通讯作者信息:
电子邮件地址: