摘要:
针对车道变换意图识别中数据源单一,传统序列模型难以捕获长序列范围内换道意图且存在长期依赖问题,提出一种结合时间信息加权指数损失函数的长短时记忆(long short-term memory,LSTM)车辆换道意图识别模型。首先,利用驾驶模拟舱、眼动仪进行高速公路驾驶实验,采集车辆运行数据和驾驶员眼动数据;然后,基于LSTM结构单元构建高速公路环境下车辆换道意图识别模型,提出基于时间信息加权的指数损失函数对模型权重进行优化;最后,利用车辆运行数据和驾驶员眼动数据对所提模型加以验证并与其他模型进行对比,所提模型换道识别的准确率为91.33%,宏平均精确率为89.04%,宏平均召回率为92.84%,...
关键词:
通讯作者信息:
电子邮件地址: