• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

孟丹丹 (孟丹丹.) | 李如玮 (李如玮.)

摘要:

针对在自然场景下,现有的手写体票据字符识别精度低的问题,提出了一种改进的端到端的网络文本识别方法.通过对Visual Geometry Group(VGG)卷积网络进行改进,从而获取深层次的图像特征;通过改进的双向长短时记忆网络(Long Short-Term Memory,LSTM)提取上下文信息,对不同长度的文本序列进行预测,改进的LSTM网络将遗忘门和输入门合并成一个更新门,使得LSTM网络可以获得更长时期的历史信息;使用最优路径的方法对文本进行转录,该方法可以找到概率最大路径,输出这条路径对应的最优序列.实验结果表明,使用该算法进行文本识别,可以使手写体中文和手写体数字准确率达到较好的效果.

关键词:

手写识别 长短时记忆网络模型(LSTM) VGG网络 最优路径

作者机构:

  • [ 1 ] [孟丹丹]北京工业大学信息学部信通学院声光信号处理实验室,北京100124

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

电脑编程技巧与维护

ISSN: 1006-4052

年份: 2021

期: 4

页码: 105-108

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次: -1

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:729/3884454
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司