收录:
摘要:
随着信息技术的高速发展,各种数字档案数据量出现了爆炸式的增长。如何合理地挖掘分析档案数据,提升对新收录档案智能管理的效果已成为一个亟需解决的问题。现有的档案数据分类方法是面向管理需求的人工分类,这种人工分类的方式效率低下,忽略了档案固有的内容信息。此外,对于档案信息发现和利用来说,需进一步挖掘分析档案数据内容之间的关联性。面向档案智能管理的需求,从档案数据的文本内容角度出发,对人工分类的档案进行进一步分析。采用LDA模型提取文档的主题特征向量,进而用K-means算法对档案的主题特征进行聚类,得到档案间的关联。针对新收录档案数据的分类问题,采用现有档案数据,有监督的训练FastText深度学习...
关键词:
通讯作者信息:
电子邮件地址: