• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

赖见辉 (赖见辉.) | 王扬 (王扬.) | 罗甜甜 (罗甜甜.) | 陈艳艳 (陈艳艳.) | 刘帅 (刘帅.)

收录:

CSCD

摘要:

为了研究因受限于观测点位的临时性和不确定性而导致自动化技术手段无法在临时交通观测中实用的难题,提出了一种适用于侧视角度拍摄视频、可快速识别车辆并实现交通流量统计的方法,该方法克服了传统视频识别技术无法满足侧视视角交通视频识别的困难.采用基于深度学习的YOLO_V3方法,以临时观测的路侧采集视频为对象进行车辆检测,提出基于车辆检测区域和流量计数区域的二级目标物检测框架,建立卡尔曼滤波+匈牙利分配+透视投影变换的交通流量计数模式,实现车辆的快速和高精度追踪.采集多组实际视频数据,从拍摄相机与道路相交角度、相机架设高度、道路车流密度3个指标,分析了不同条件下方法的有效性,结果表明:在相机高度为3 m,与路侧夹角为30°的环境中,车流计数精度在95%左右,但当公交、货车等大型车辆占比较高时,精度降为90%左右.在windows10 x64操作系统,2080Ti显卡,64 G内存,i7-7820XCPU的环境下,利用1080P视频流进行执行效率测试,显示相机架设角度和高度均对程序运行效率无显著影响,而车流密度则影响较大,在低密度流量下,FPS值约为44,而高密度流量下,FPS值降为33左右,表明该方法仍然具有较高的执行效率,可用于实时视频流量计数.

关键词:

视频识别 交通流量 YOLO_V3 侧视视频 智能交通

作者机构:

  • [ 1 ] [赖见辉]北京交通运输职业学院
  • [ 2 ] [王扬]北京工业大学

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

公路交通科技

ISSN: 1002-0268

年份: 2021

期: 1

卷: 38

页码: 135-142

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次: -1

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:523/4978577
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司