收录:
摘要:
为解决室外场景中动态区域对视觉里程计计算过程的干扰,获得准确的相机位姿和场景深度,提出一种自监督深度学习框架下融合动态区域检测的视觉里程计算法.给定相邻2帧图像,首先,采用深度估计网络计算2幅图像对应深度图,采用位姿估计网络获得二者初始相对位姿.然后,借助视点变换,计算两视角深度图像之间的差异,确定动态区域.在此基础上,对输入图像中动静态区域进行分离.之后,匹配两视角图像静态区域特征,计算最终相机位姿.从光度、平滑度以及几何一致性三方面构造损失函数,并在损失函数中融入动态区域信息,对所构造网络模型进行端到端自监督训练.在KITTI数据集上验证了所提算法,并将其与最近2年提出的相关算法进行比较....
关键词:
通讯作者信息:
电子邮件地址: