• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Gao, Xuejin (Gao, Xuejin.) (学者:高学金) | Wang, Pu (Wang, Pu.) | Sun, Chongzheng (Sun, Chongzheng.) | Yi, Jianqiang (Yi, Jianqiang.) | Zhang, Yating (Zhang, Yating.) | Zhang, Huiqing (Zhang, Huiqing.)

收录:

CPCI-S

摘要:

To overcome the deficiency of Support Vector Machine (SVM) for regression, dynamic epsilon-SVM method was proposed. To establish precise mathematical models, a new modeling method was introduced, combining self-organizing feature map (SOFM) with the dynamic epsilon-SVM. Firstly, SOFM was used as a clustering algorithm to partition the whole input space into several disjointed regions; then, the dynamic epsilon-SVM modeled for these partitioned regions. This method was illustrated by modeling penicillin fermentation process with plant field data. Results show that the method achieves significant improvement in generalization performance compared with other methods based on SVM.

关键词:

作者机构:

  • [ 1 ] [Gao, Xuejin]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100022, Peoples R China
  • [ 2 ] [Wang, Pu]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100022, Peoples R China
  • [ 3 ] [Sun, Chongzheng]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100022, Peoples R China
  • [ 4 ] [Zhang, Yating]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100022, Peoples R China
  • [ 5 ] [Zhang, Huiqing]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100022, Peoples R China
  • [ 6 ] [Yi, Jianqiang]Chinese Acad Sci, Key Lab Complex Syst & Intelligence Sci, Beijing 100033, Peoples R China

通讯作者信息:

  • 高学金

    [Gao, Xuejin]Beijing Univ Technol, Coll Elect Informat & Control Engn, Beijing 100022, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTELLIGENT COMPUTING, PART I: INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, ICIC 2006, PART I

ISSN: 0302-9743

年份: 2006

卷: 4113

页码: 194-203

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:234/3899793
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司