Indexed by:
Abstract:
This study investigated the effects of secondary chlorination on bacterial regrowth, microbial communities (abundant and rare taxa) and bacterial functions of pipe wall biofilm and bulk water in simulated secondary water supply system (SWSS). Continuous secondary chlorination was more effective than short-term secondary chlorination to control the bacterial regrowth in both biofilm and water samples. Bacterial diversity slightly reduced after continuous secondary chlorination, and 19.27% of the total operational taxonomic units (OTUs) were shared by biofilm and water samples, with Bacillus as the dominant genus. Abundant and rare taxa exhibited different community structures. Proteobacteria and candidate division W PS-1 predominated in abundant and rare phyla were sensitive to chlorine, while Firmicutes, Acidobacteria and Bacteroidetes, exhibited relative strong chlorine resistance. The abundant genera in control sample (e.g., Bosea, .Sphingobium and Gemmata) exhibited poor tolerance to chlorine, while Bacillus in biofilm and Defluvilmonas in water were the main chlorineresistant genera. Moreover, the composition of rare genera in each sample was obviously different. Furthermore, a total of 18 potential pathogens were detected with Pseudomonas as the dominant genus, most of which were significantly reduced after disinfection. There were mainly positive interactions among potential pathogenic bacteria, with Enterococcus, Legionena and Vibrio as the hub genera as revealed by network analysis. Similar bacterial functions in both biofilm and water were observed with metabolism as the predominant bacterial function, while, human disease function only accounted for 1.07% of bacterial functions. These results highlighted the importance of continuous secondary chlorination for controlling biosafety of SWSS and identified the dissimilar responses of abundant and rare bacteria to the disinfection, as well as the co-occurrence patterns among potential pathogens, improving our understanding of bacterial communities in SWSS. (C) 2020 Elsevier B.V. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
SCIENCE OF THE TOTAL ENVIRONMENT
ISSN: 0048-9697
Year: 2020
Volume: 719
9 . 8 0 0
JCR@2022
ESI Discipline: ENVIRONMENT/ECOLOGY;
ESI HC Threshold:138
Cited Count:
WoS CC Cited Count: 36
SCOPUS Cited Count: 35
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0