• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bai, Xiaoming (Bai, Xiaoming.) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才) | Shi, Qin (Shi, Qin.) | Sun, Yanfeng (Sun, Yanfeng.) (学者:孙艳丰)

收录:

CPCI-S

摘要:

A novel nonlinear face recognition method named GPPface is proposed in this paper. GPPface is based on nonlinear dimensionality reduction algorithm, Geodesic Preserving Projection (GPP). As face images are regarded to be embedded in a nonlinear space, GPP is presented to nonlinearly map high-dimensional face images to low-dimensional feature space. GPP overcomes the weaknesses of traditional linear and nonlinear dimensionality reduction algorithms, well preserves the intrinsic structure of the manifold and can fast and efficiently map new sample point to feature space. To recover space structure of face images and tackle small sample size problem, 3D morphable model is developed to derive multiple images of a person from a single image. Experimental results on ORL and PIE face databases show that our method makes impressive performance improvement compared with conventional face recognition methods.

关键词:

face recognition morphable model GPPface nonlinear dimensionality reduction

作者机构:

  • [ 1 ] [Bai, Xiaoming]Beijing Univ Technol, Multimedia & Intelligent Software Technol Beijing, Beijing 100022, Peoples R China
  • [ 2 ] [Yin, Baocai]Beijing Univ Technol, Multimedia & Intelligent Software Technol Beijing, Beijing 100022, Peoples R China
  • [ 3 ] [Shi, Qin]Beijing Univ Technol, Multimedia & Intelligent Software Technol Beijing, Beijing 100022, Peoples R China
  • [ 4 ] [Sun, Yanfeng]Beijing Univ Technol, Multimedia & Intelligent Software Technol Beijing, Beijing 100022, Peoples R China

通讯作者信息:

  • [Bai, Xiaoming]Beijing Univ Technol, Multimedia & Intelligent Software Technol Beijing, Beijing 100022, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF THE FIFTH IEEE INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS, VOLS 1 AND 2

年份: 2006

页码: 850-855

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:231/3910438
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司