• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Gao, Zhiwei (Gao, Zhiwei.) | Lu, Dechun (Lu, Dechun.) (学者:路德春) | Huang, Mian (Huang, Mian.)

收录:

Scopus SCIE

摘要:

Inclusion of flexible fibers such as polypropylene and polyester is an effective method for soil improvement, as it significantly enhances the soil strength and ductility. A proper constitutive model is essential for assessing the stability and serviceability of fiber-reinforced slopes/foundations. A new method for constitutive modeling of fiber-reinforced sand (FRS) is proposed. It assumes that the strain of FRS is dependent on the deformation of the sand skeleton only, while the effective skeleton stress and effective skeleton void ratio, which should be used in describing the dilatancy, plastic hardening and elastic stiffness of FRS, are affected by fiber inclusion. The effective skeleton stress is dependent on the shear strain level, and the effective skeleton void ratio is affected by the fiber content and sample preparation method. A critical state FRS model in the triaxial stress space is proposed using the concept of effective skeleton stress and void ratio. Four parameters are introduced to characterize the effect of fiber inclusion on the mechanical behavior of sand, all of which can be easily determined based on triaxial test data on FRS, without measuring the stress-strain relationship of individual fibers. The model is validated by triaxial compression test results on four fiber-reinforced sands under loading conditions with various confining pressures, densities and stress paths. Potential improvement in the model for incorporating fiber orientation anisotropy is discussed.

关键词:

Constitutive model Critical state Dilatancy Fiber-reinforced sand Triaxial compression

作者机构:

  • [ 1 ] [Gao, Zhiwei]Univ Glasgow, James Watt Sch Engn, Glasgow G12 8QQ, Lanark, Scotland
  • [ 2 ] [Huang, Mian]Univ Glasgow, James Watt Sch Engn, Glasgow G12 8QQ, Lanark, Scotland
  • [ 3 ] [Lu, Dechun]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • [Gao, Zhiwei]Univ Glasgow, James Watt Sch Engn, Glasgow G12 8QQ, Lanark, Scotland

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ACTA GEOTECHNICA

ISSN: 1861-1125

年份: 2020

期: 10

卷: 15

页码: 2797-2811

5 . 7 0 0

JCR@2022

ESI学科: GEOSCIENCES;

ESI高被引阀值:99

被引次数:

WoS核心集被引频次: 12

SCOPUS被引频次: 12

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:473/4292262
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司