• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ji, Jiantao (Ji, Jiantao.) | Peng, Yongzhen (Peng, Yongzhen.) (学者:彭永臻) | Li, Xiyao (Li, Xiyao.) | Zhang, Qiong (Zhang, Qiong.) | Liu, Xiping (Liu, Xiping.)

收录:

EI Scopus SCIE PubMed

摘要:

Mainstream anammox still faces the challenges of non-ideal NO2-/NH4+ ratios and excess nitrate resulted from the instability of partial nitrification (PN) in municipal wastewater. To address these problems, in this study, we developed a novel two-sludge process that combined PN with synchronous anammox and endogenous partial denitrification (SAEPD); the process was tested with pre-treated domestic sewage at ambient temperatures for 205 d. High nitrogen removal efficiency of 91.2% was achieved with an influent C/N ratio of 1.7 at 15.4 degrees C; the success was attributed to the fact that EPD replenished the deficient nitrite by reducing nitrate and the excess nitrite was further reduced to nitrogen gas. With a non-ideal NO2-/NH4+ ratio of 0.89, the contribution of the SAEPD-sequencing batch reactor (SBR) during the anoxic stage reached 98.2% and the proportional contributions of the anammox and denitrification pathways were 77.2% and 22.8%, respectively. Although the low nitrite accumulation (66.1%) caused 10.8 mg N/L of nitrate to be transported into the SAEPD-SBR and the anammox reaction also converted 20% of nitrite to nitrate, only 1.1 mg N/L of nitrate remained in the effluent. High-throughput sequencing analysis revealed that although NH2OH was added, some genera of nitrite-oxidizing bacteria (0.73%) remained in the PN-SBR and potentially resulted in the oxidation of nitrite to nitrate. In the SAEPD-SBR, anammox and endogenous denitrifying bacteria co-existed and synergistically achieved the removal of ammonium, nitrite, and nitrate. Overall, the PN-SAEPD process has great potential for achieving cost-effective and energy-efficient municipal wastewater treatment. (C) 2020 Elsevier Ltd. All rights reserved.

关键词:

Energy efficiency Mainstream anammox Municipal wastewater Endogenous partial denitrification Partial nitrification

作者机构:

  • [ 1 ] [Ji, Jiantao]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 2 ] [Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Xiyao]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Qiong]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 5 ] [Liu, Xiping]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 6 ] [Ji, Jiantao]Zhengzhou Univ, Coll Ecol & Environm, Zhengzhou 450001, Peoples R China

通讯作者信息:

  • 彭永臻

    [Peng, Yongzhen]Beijing Univ Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

WATER RESEARCH

ISSN: 0043-1354

年份: 2020

卷: 175

1 2 . 8 0 0

JCR@2022

ESI学科: ENVIRONMENT/ECOLOGY;

ESI高被引阀值:138

被引次数:

WoS核心集被引频次: 126

SCOPUS被引频次: 140

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 6

在线人数/总访问数:781/3889922
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司