• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ou, Jun (Ou, Jun.) | Li, Yujian (Li, Yujian.) | Liu, Wei (Liu, Wei.)

收录:

EI SCIE

摘要:

Convolutional neural network (CNN) is widely applied to different areas due to good recognition performance. However, convolution operation is a complex computation and consumes the bulk of processing time for CNN. It is still a hot problem how to develop a novel model with good recognition performance for deep learning. Here, we propose a novel model, namely, two-dimensional perceptron (TDP), to get direct input of two-dimensional data for further processing. A TDP has a new network architecture and an innovative computation process of hidden neurons. In cases with the same number of hidden neurons, compared with multilayer perceptron (MLP), TDP achieves good recognition performance with 1 x -36 x speedup and a decrease of parameters by exceeding 97% on MNIST and COIL-20 datasets. Meanwhile, TDP obtains 1%-32% improvement of recognition accuracy in comparison to CNN on CIFAR-10 and SVHN datasets. Furthermore, on INFUSE dataset, TDP has an increase of F1 score by up to almost 11% in comparison with MLP and CNN. The results indicate that TDP is a promising and novel model with excellent recognition performance. (C) 2020 Elsevier B.V. All rights reserved.

关键词:

Convolutional neural network F1 score Multilayer perceptron Recognition performance Two-dimensional perceptron

作者机构:

  • [ 1 ] [Ou, Jun]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Yujian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Yujian]Guilin Univ Elect Technol, Sch Artificial Intelligence, Guilin 541004, Peoples R China
  • [ 4 ] [Liu, Wei]Chengdu Univ Informat Technol, Coll Management, Chengdu 610225, Peoples R China

通讯作者信息:

  • [Ou, Jun]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

KNOWLEDGE-BASED SYSTEMS

ISSN: 0950-7051

年份: 2020

卷: 195

8 . 8 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:34

JCR分区:1

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:330/3654500
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司