• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Min (Li, Min.) | Xu, Dachuan (Xu, Dachuan.) (学者:徐大川) | Zhang, Dongmei (Zhang, Dongmei.) | Zhou, Huiling (Zhou, Huiling.)

收录:

SSCI EI Scopus SCIE

摘要:

As a classic NP-hard problem in machine learning and computational geometry, the k-means problem aims to partition the given points into k sets to minimize the within-cluster sum of squares. The k-means problem with penalties (k-MPWP), as a generalizing problem of the k-means problem, allows a point that can be either clustered or penalized with some positive cost. In this paper, we mainly apply the parallel seeding algorithm to the k-MPWP, and show sufficient analysis to bound the expected solution quality in the case where both the number of iterations and the number of points sampled in each iteration can be given arbitrarily. The approximate guarantee can be obtained as O(f(M)lnk), where f(M) is a polynomial function involving the maximal ratio M between the penalties. On one hand, this result can be viewed as a further improvement on the parallel algorithm for k-MPWP given by Li et al., where the number of iterations depends on other factors. On the other hand, our result also generalizes the one solving the k-means problem presented by Bachem et al., because k-MPWP is a variant of the k-means problem. Moreover, we present a numerical experiment to show the effectiveness of the parallel algorithm for k-means with penalties.

关键词:

parallel seeding algorithm approximation algorithm k-means k-means problem with penalties

作者机构:

  • [ 1 ] [Li, Min]Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
  • [ 2 ] [Xu, Dachuan]Beijing Univ Technol, Dept Operat Res & Sci Comp, Beijing 100124, Peoples R China
  • [ 3 ] [Zhou, Huiling]Beijing Univ Technol, Dept Operat Res & Sci Comp, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Dongmei]Shandong Jianzhu Univ, Sch Comp Sci & Technol, Jinan 250101, Peoples R China

通讯作者信息:

  • [Zhang, Dongmei]Shandong Jianzhu Univ, Sch Comp Sci & Technol, Jinan 250101, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

ISSN: 0969-6016

年份: 2020

期: 1

卷: 29

页码: 158-171

3 . 1 0 0

JCR@2022

ESI学科: ECONOMICS & BUSINESS;

ESI高被引阀值:112

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:521/3906551
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司