收录:
摘要:
The occurrence conditions of the metastable chaotic vibrations are firstly studied in the bistable asymmetric composite laminated square shallow shell under the foundation excitation. The metastable chaos is observed in the vibration experiments of the bistable asymmetric composite laminated square shallow shell. Based on the dynamic model of the bistable asymmetric composite laminated square shallow shell, the critical instability condition of the zero equilibrium point is analyzed in the bistable asymmetric composite laminated square shallow shell by using Jacobian matrix and Routh-Hurwitz criterion. We perform numerical simulations based on Runge-Kutta algorithm and the vibration experiments. A sufficient condition is found for the existence of the metastable chaos in the bistable asymmetric composite laminated square shallow shell. It is found that the zero equilibrium point of the bistable asymmetric composite laminated square shallow shell is unstable when the parametric excitation exceeds a specific critical value. The numerical results verify the theoretical analyses of the metastable chaos. It is demonstrated that the increase of the parametric excitation leads to the easier occurrence of the metastable chaos through observing the characteristics of the nonlinear dynamic behaviors of the system. Moreover, the existence of the metastable chaotic vibrations is confirmed in the bistable asymmetric composite laminated square shallow shell under the foundation excitation by using the vibration experiments. The large parametric excitation subjecting to the bistable asymmetric composite laminated square shallow shell is a key factor for the existence of the metastable chaos in the bistable asymmetric composite laminated square shallow shell under the foundation excitation. © 2020 Elsevier Ltd
关键词:
通讯作者信息:
电子邮件地址:
来源 :
Composite Structures
ISSN: 0263-8223
年份: 2021
卷: 255
6 . 3 0 0
JCR@2022
ESI学科: MATERIALS SCIENCE;
ESI高被引阀值:116
JCR分区:1