收录:
摘要:
The real-time prediction model that can predict the onset of paroxysmal atrial fibrillation (PAF) 45 min in advance on the one minute electrocardiogram (ECG) segment with 8 Hz sampling frequency was proposed, for real-time and data-intensive application scenarios such as long-term ECG monitoring and intensive care units (ICU). The probabilistic symbolic pattern recognition method was used to extract the pattern transition features within one minute window of down sampled ECG sequence, reducing the calculation complexity of the model and the demand for storage space, so as to ensure the effect of real-time prediction. A hybrid model (CNN-LSTM) of the convolutional neural network (CNN) and the long short-term memory (LSTM) was proposed to extract local spatial features and time-dependent features implied in pattern transition features. An ensemble classifier based on CNN-LSTM was constructed to improve the generalization ability of the model. Spark Streaming technology was used to read, write and calculate ECG streaming data, and low latency communication between data and model was realized. The accuracy, sensitivity, and specificity of the proposed model were 91.26%, 82.21%, and 95.79% respectively. The average delay of model processing was 2 s, which can meet the real-time PAF prediction demand. © 2020, Zhejiang University Press. All right reserved.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
Journal of Zhejiang University (Engineering Science)
ISSN: 1008-973X
年份: 2020
期: 5
卷: 54
页码: 1039-1048
归属院系: