• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Fu, Li-Hua (Fu, Li-Hua.) | Zhao, Yu (Zhao, Yu.) | Sun, Xiao-Wei (Sun, Xiao-Wei.) | Lu, Zhong-Shan (Lu, Zhong-Shan.) | Wang, Dan (Wang, Dan.) | Yang, Han-Xue (Yang, Han-Xue.)

收录:

EI CSCD

摘要:

Video object segmentation (VOS) is a research hotspot in the field of computer vision.Traditional VOS based on deep learning fine-tunes the deep network online, which leads to long time-consuming segmentation and is difficult to meet real-time requirements.Therefore, we propose a fast VOS method.First, the weight-shared siamese encoder subnet maps the reference stream and the target stream to the same feature space; so that the same objects have similar features.Then, the global feature extraction subnet matches the features similar to the given object to locate the object.Finally, the decoder subnet restores the object features and gets edge information by connecting the low-level features of target stream to output the mask.Experiments on public benchmark datasets show that our method improves the speed significantly and achieves good performance. © 2020, Chinese Institute of Electronics. All right reserved.

关键词:

Benchmarking Computer hardware description languages Deep learning Image segmentation Motion compensation

作者机构:

  • [ 1 ] [Fu, Li-Hua]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Zhao, Yu]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Sun, Xiao-Wei]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Lu, Zhong-Shan]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Wang, Dan]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Yang, Han-Xue]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • [zhao, yu]faculty of information technology, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Acta Electronica Sinica

ISSN: 0372-2112

年份: 2020

期: 4

卷: 48

页码: 625-630

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:1394/3636871
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司