• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

汪友生 (汪友生.) | 刘继荣 (刘继荣.)

收录:

incoPat

摘要:

本发明公开了一种基于神经网络的无监督血管内超声图像配准方法,属于医学图像处理技术领域。针对传统配准方法迭代优化配准时间长的缺点,引入深度学习把迭代时间转移到网络模型训练时间中去,本发明使用类U‑net网络结构,用步长卷积代替池化层进行下采样,保留更多配准需要的空间位置特征。针对常见深度学习方法对于IVUS图像配准精度较低问题,本发明继续在网络结构引入注意力机制,这一改进使得配准网络模型在训练过程中能更好聚焦于待配准图像之间形态差异较大的地方,有效提高血管内超声图像配准精度。最终本发明配准精度和最先进传统配准方法不相上下,而配准用时大大减少。

关键词:

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

专利基本信息 :

专利类型: 发明申请

申请(专利)号: CN202010975102.0

申请日期: 2020-09-16

公开(公告)日: 2020-12-29

公开(公告)号: CN112150425A

申请(专利权): 北京工业大学

法律状态: 实质审查

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:6246/2940340
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司