收录:
摘要:
本发明涉及一种基于深度学习的细粒度图像弱监督目标定位方法,用于解决仅使用易于收集的弱监督的语言描述信息来识别和定位细粒度图像的问题。本发明直接在图像的像素级别上和语言描述的word进行模态间的细粒度语义对齐。把图像输入到卷积神经网络中提取特征向量, 同时对语言描述进行编码,提取出语言描述的特征向量。将卷积特征图和语言描述特征向量进行特征匹配,并对特征匹配图进行处理,得到目标的显著图,根据特征匹配图得到最终定位的结果。本发明在不需要强监督的标注边界框的情况下,解决了细粒度图像的弱监督目标定位。
关键词:
通讯作者信息:
电子邮件地址: