收录:
摘要:
Nano-iron has received extensive attention in the repair of contaminated soil and groundwater. In order to further explore its migration behavior in porous media, nano-zero-valent iron (nZVI) was coated with sodium carboxymethyl starch (CMS), and the sedimentation test of modified nano-zero-valent iron was carried out. The zeta potential and particle size distribution were measured to explore its dispersion. The column experiments of modified nano-zero-valent iron in pickled sand and washed sand under different pH conditions were carried out. The effects of chemical heterogeneity and pH on the migration of nano-iron in porous media were analyzed. The results showed that CMS coated nano-iron not only stabilizes the nanoparticles themselves, but also reduces their deposition on the surface of porous media, which greatly improves the mobility. When pH=6 to 8, the zeta potential of nZVI was reduced from 18.3mV to 2.9mV, the effective particle size increased from 685nm to 880nm, and the stability was deteriorated. When the zeta potential of CMS-nZVI increased from -19.7mV to -53.5mV, the electrostatic repulsion between particles was enhanced and the stability was improved. According to energy dispersive spectroscopy (EDS) analysis, there were oxide impurities such as carbon, aluminum and iron on the surface of the washed sand. These impurities have a positive charge, which will enhance the adsorption of negatively charged CMS-nZVI, which is not conducive to its migration. After pickling quartz sand, the surface impurities were greatly reduced. At pH=8, the maximum mobility of CMS-nZVI in pickled sand was 77.0%, which is 63.0% better than that of washed sand. In addition, the higher pH environment helps to increase the surface negative charge of the quartz sand medium, reduce the adsorption of particles and the medium, and promote the migration of the nanoparticles. © 2020, Chemical Industry Press. All right reserved.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
Chemical Industry and Engineering Progress
ISSN: 1000-6613
年份: 2020
期: 4
卷: 39
页码: 1567-1574