• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liang, Wenjun (Liang, Wenjun.) (学者:梁文俊) | Sun, Huipin (Sun, Huipin.) | Shi, Xiujuan (Shi, Xiujuan.) | Zhu, Yuxue (Zhu, Yuxue.)

收录:

SCIE

摘要:

In order to make full use of the heat in nonthermal plasma systems and decrease the generation of by-products, a reverse-flow nonthermal plasma reactor coupled with catalyst was used for the abatement of toluene. In this study, the toluene degradation performance of different reactors was compared under the same conditions. The mechanism of toluene abatement by nonthermal plasma coupled with catalyst was explored, combined with the generation of ozone (O-3), NO2, and organic by-products during the reaction process. It was found that a long reverse cycle time of the reactor and a short residence time of toluene decreased the internal reactor temperature, which was not beneficial for the degradation of toluene. Compared with the dielectric barrier discharge (DBD) reactor, toluene degradation efficiency in the double dielectric barrier discharge (DDBD) reactor was improved at the same discharge energy level, but the concentrations of NO2 and O-3 in the effluent were relatively high; this was improved after the introduction of a catalyst. In the reverse-flow nonthermal plasma reactor coupled with catalyst, the CO2 selectivity was the highest, while the selectivity and amount of NO2 was the lowest and aromatics, acids, and ketones were the main gaseous organic by-products in the effluent. The reverse-flow DBD-catalyst reactor was successful in decreasing organic by-products, while the types of organic by-products in the DDBD reactor were much more than those in the DBD reactor.

关键词:

by-products catalyst DBD DDBD nonthermal plasma reverse-flow toluene

作者机构:

  • [ 1 ] [Liang, Wenjun]Beijing Univ Technol, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 2 ] [Sun, Huipin]Beijing Univ Technol, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 3 ] [Shi, Xiujuan]Beijing Univ Technol, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 4 ] [Zhu, Yuxue]Beijing Univ Technol, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China

通讯作者信息:

  • 梁文俊

    [Liang, Wenjun]Beijing Univ Technol, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

CATALYSTS

年份: 2020

期: 5

卷: 10

3 . 9 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:33

JCR分区:2

被引次数:

WoS核心集被引频次: 12

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:1630/2931859
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司