• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Cai, Yi-Heng (Cai, Yi-Heng.) | Wang, Xue-Yan (Wang, Xue-Yan.) | Ma, Jie (Ma, Jie.) | Kong, Xin-Ran (Kong, Xin-Ran.)

收录:

EI CSCD

摘要:

This paper proposed an improved method which can reduce the misclassification in human pose estimation based on random forest and increase the accuracy, included adaptive fusion feature extraction and misclassification processing mechanism. Firstly, we improved the method of feature extraction to adaptive extract deep fusion feature with adaptive feature fusion extractive method, so that, both distance information and part information could enhance feature expression. Furthermore, owing to inspiration from error cluster analysis and iteration thought, the misclassification processing mechanism is proposed to handle misclassification appearance. Finally, we achieved accurate human pose estimation from single depth images by applying the principal direction vector based on the improved principal direction analysis (PDA) algorithm. The experimental results demonstrated that this algorithm can efficiently eliminate several misclassifications and improve the accuracy of the 3D pose estimation. Copyright © 2020 Acta Automatica Sinica. All rights reserved.

关键词:

Cluster analysis Decision trees Extraction Feature extraction Image enhancement Iterative methods Random forests

作者机构:

  • [ 1 ] [Cai, Yi-Heng]Signal and Information Processing Laboratory, Department of Information, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Wang, Xue-Yan]Signal and Information Processing Laboratory, Department of Information, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Ma, Jie]Signal and Information Processing Laboratory, Department of Information, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Kong, Xin-Ran]Signal and Information Processing Laboratory, Department of Information, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • [cai, yi-heng]signal and information processing laboratory, department of information, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Acta Automatica Sinica

ISSN: 0254-4156

年份: 2020

期: 7

卷: 46

页码: 1457-1466

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:220/3605096
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司