收录:
摘要:
In order to study the mechanical and deformation properties of the new prefabricated subway station, took the first prefabricated subway station in Changchun as the background, based on the large-scale general finite element software ABAQUS, the force transfer and deformation mechanism of the single-ring structure of the prefabricated subway station after assembling into a ring were studied.Four numerical models of different structure types and steel bars bracing combination were established. The mechanical, deformation and joint contact surfaces performances of the structure under the action of self-weight were compared and analyzed. The force transfer and deformation mechanism of the type of prefabricated subway station single ring structure were revealed. The results show that the supporting function of steel bars could not be ignored. After added horizontal steel bars to the outside of arch foot, the maximum Mises stress of the structure was reduced by about 40%, the maximum principal stress was reduced by about 80%, the maximum horizontal displacement was reduced by about 90%, and the deflection of the vault was reduced by about 80%, the shear force and bending moment of the structure decreased obviously. The contact state of the joints changed obviously, and the extrusion area ratio of the other joints increased significantly except the D-E joint of the vault, the assembled structure basically met the design requirements of stable and reliable force transmission, safe and controllable deformation, and the overall self-stabilization ability was significantly improved. The cooperative work of steel bars and assembled structure optimized the transmission path of single-ring structure, limited the horizontal and vertical deformation of the structure effectively, the mechanical and deformation performance of this type of fabricated structure was better than the corresponding index of the cast-in-place structure without the steel bar. © 2020, Editorial Department of Journal of Southwest Jiaotong University. All right reserved.
关键词:
通讯作者信息:
电子邮件地址: