• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Wenjing (Li, Wenjing.) | Li, Meng (Li, Meng.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Guo, Xin (Guo, Xin.)

收录:

EI Scopus SCIE PubMed

摘要:

To improve the performance of nonlinear system modeling, this study proposes a feature clustering-based adaptive modular neural network (FC-AMNN) by simulating information processing mechanism of human brains in the way that different information is processed by different modules in parallel. Firstly, features are clustered using an adaptive feature clustering algorithm, and the number of modules in FC-AMNN is determined by the number of feature clusters automatically. The features in each cluster are then allocated to the corresponding module in FC-AMNN. Then, a self-constructive RBF neural network based on Error Correction algorithm is adopted as the subnetwork to study the allocated features. All modules work in parallel and are finally integrated using a Bayesian method to obtain the output. To demonstrate the effectiveness of the proposed model, FC-AMNN is tested on several UCI benchmark problems as well as a practical problem in wastewater treatment process. The experimental results show that the FC-AMNN can achieve a better generalization performance and an accurate result for nonlinear system modeling compared with other modular neural networks. (C) 2019 ISA. Published by Elsevier Ltd. All rights reserved.

关键词:

Bayesian method Modular neural network RBF neural network Nonlinear system modeling Feature clustering

作者机构:

  • [ 1 ] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • [Li, Wenjing]100 Pingleyuan, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISA TRANSACTIONS

ISSN: 0019-0578

年份: 2020

卷: 100

页码: 185-197

7 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 11

SCOPUS被引频次: 15

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:479/3908194
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司